On normal Sylow subgroups^{*}

Claudi Lleyda Moltó

The three Sylow Theorems

Definition 1 (Sylow \clubsuit -subgroup). Let **B** $\bar{\mathbf{e}}$ be a group of order \clubsuit ⁹ \clubsuit </sup>, where \clubsuit is a prime number and \clubsuit \nmid \clubsuit , such that there exists a subgroup \Rightarrow of **B** $\bar{\mathbf{e}}$ of order \clubsuit ⁹. Then we say that \Rightarrow is a Sylow \clubsuit -subgroup of **B** $\bar{\mathbf{e}}$.

Theorem 2 (First Sylow Theorem). Let **Bē** be a finite group. Then for every prime **4** dividing the order of **Bē**. Then there exists a Sylow **4**-subgroup of **Bē**, and every **4**-subgroup of **Bē** is in a Sylow **4**-subgroup of **Bē**.

Theorem 3 (Segond Sylow Theorem). Let $\mathbf{B}\bar{\mathbf{e}}$ be a finite group. Then for every prime \mathbf{A} dividing the order of $\mathbf{B}\bar{\mathbf{e}}$, the Sylow \mathbf{A} -subgroups of $\mathbf{B}\bar{\mathbf{e}}$ are conjugate.

Theorem 4 (Third Sylow Theorem). Let $\mathbf{B}\mathbf{\bar{e}}$ be a group of order $\mathbf{G}^{\mathbf{O}}\mathbf{h}$, where \mathbf{G} is a prime number and $\mathbf{G} \nmid \mathbf{h}$, and let $\mathbf{\dot{t}}_{\mathbf{G}}$ be the number of Sylow \mathbf{G} -subgroups of $\mathbf{B}\mathbf{\bar{e}}$. Then

 $\mathbf{1}_{\mathbf{a}} \mid \mathbf{1}_{\mathbf{a}} \quad and \quad \mathbf{1}_{\mathbf{a}} \equiv \mathbf{\mathbf{a}} \pmod{\mathbf{a}},$

Normal Sylow subgroups

Proof. Let \Rightarrow be the Sylow \clubsuit subgroup of **B** $\bar{\mathbf{e}}$. By the second Sylow Theorem we have that for every $\breve{\boldsymbol{\delta}} \in \mathbf{B}\bar{\mathbf{e}}$ we find that

and $\not>$ is a normal subgroup of **B** $\bar{\mathbf{e}}$.

Theorem 6. Let **Be** be a finite group such that there exist two different prime factors \clubsuit and \bigtriangleup dividing its order with $\pounds_{\clubsuit} = \bigstar$ and $\pounds_{\clubsuit} = \bigstar$. Then

Ø

^{*₩ = #{₩}}

the elements of the Sylow \clubsuit -subgroup commute with the elements of the Sylow Δ -subgroup of **Be**.

Proof. Let Υ be the group identity of **B** $\bar{\mathbf{e}}$ and let $\stackrel{*}{\Rightarrow}$ be the Sylow $\stackrel{*}{\leftrightarrow}$ -subgroup and \checkmark be the Sylow $\stackrel{*}{\triangleleft}$ -subgroup of **B** $\bar{\mathbf{e}}$. By Lagrange's Theorem we find that

$$\not \cong \cap \not = \{ \mathbf{i} \},$$

and by the last proposition we have that $\not \ge$ and $\not x$ are normal subgroups of $\mathbf{B}\overline{\mathbf{e}}$. Then, for every $\mathbf{H} \in \not \ge$ and every $\mathbf{\hat{H}} \in \mathbf{K}$ we have

$$\begin{split} \blacksquare \hat{\mathbf{x}} \blacksquare^{-\underline{\mathsf{W}}} \hat{\mathbf{x}}^{-\underline{\mathsf{W}}} &= (\blacksquare \hat{\mathbf{x}} \blacksquare^{-\underline{\mathsf{W}}}) \hat{\mathbf{x}}^{-\underline{\mathsf{W}}} \in \mathbf{\cancel{K}} \\ &= \blacksquare (\hat{\mathbf{x}} \blacksquare^{-\underline{\mathsf{W}}} \hat{\mathbf{x}}^{-\underline{\mathsf{W}}}) \in \mathbf{\cancel{K}} \\ &\in \blacksquare (\hat{\mathbf{x}} \blacksquare^{-\underline{\mathsf{W}}} \hat{\mathbf{x}}^{-\underline{\mathsf{W}}}) \in \mathbf{\cancel{K}} \\ &\in \mathbf{\cancel{K}} \cap \mathbf{\cancel{K}} = \{\mathbf{\cancel{K}}\} \\ &= \{\mathbf{\cancel{K}}\}. \end{split}$$

with which we find that $\blacksquare \hat{\pi} = \hat{\pi} \blacksquare$

Theorem 7. Let $\mathbf{B}\bar{\mathbf{e}}$ be a finite group, let $\mathbf{G}_{\underline{i}\underline{i}}, \ldots, \mathbf{G}_{\mathbf{G}}$ be the different primes dividing the order of $\mathbf{B}\bar{\mathbf{e}}$ and let $\mathbf{*}_{\underline{i}\underline{i}\underline{i}}, \ldots, \mathbf{*}_{\mathbf{G}}$ be the Sylow subgroups of $\mathbf{B}\bar{\mathbf{e}}$. Then the Sylow subgroups $\mathbf{*}_{\underline{i}\underline{i}\underline{i}}, \ldots, \mathbf{*}_{\mathbf{G}}$ are normal if and only if

Proof. Suppose that $\mathbf{B}\bar{\mathbf{e}}\cong \mathbf{D}_{\mathbf{H}}\times\cdots\times\mathbf{D}_{\mathbf{G}}$. We have

$$|\mathbf{B}\bar{\mathbf{e}}| = |\mathbf{\dot{z}}_{\underline{\mathbf{u}}} \times \cdots \times \mathbf{\dot{z}}_{\mathbf{O}}| = |\mathbf{\dot{z}}_{\underline{\mathbf{u}}}| \cdots |\mathbf{\dot{z}}_{\mathbf{O}}|,$$

which implies $\mathbf{L}_{\mathbf{G}_{\underline{u}}} = \mathbf{W}, \dots, \mathbf{L}_{\mathbf{G}_{\mathbf{G}}} = \mathbf{W}$, and by proposition 5 we find that the Sylow subgroups $\mathbf{P}_{\underline{u}}, \dots, \mathbf{P}_{\mathbf{G}}$ are normal.

Suppose now the Sylow subgroups $\mathbf{*}_{\mathbf{i}\mathbf{i}\mathbf{j}}, \ldots, \mathbf{*}_{\mathbf{0}}$ are normal. By the previous theorem we have that the elements of two different groups commute. With this we find that the function

is a homomorphism. The homomorphism \blacksquare is injective, since the order of a product of commuting elements with relatively primer orders is equal to the product of their orders. We also have that

$$|\mathbf{B}\bar{\mathbf{e}}| = |\mathbf{\dot{s}}_{\underline{\mathbf{i}}\underline{\mathbf{i}}} \times \cdots \times \mathbf{\dot{s}}_{\mathbf{O}}| = |\mathbf{\dot{s}}_{\underline{\mathbf{i}}\underline{\mathbf{i}}}| \cdots |\mathbf{\dot{s}}_{\mathbf{O}}|,$$

with which we find that \blacksquare is a group isomorphism.

0

https://kconrad.math.uconn.edu/blurbs/grouptheory/sylowapp.pdf.

Ó